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LECTURE 21: NOVEMBER 13

Hodge modules with support a point. Last time, we introduced polarized
Hodge modules. The definition contains the — at first glance somewhat mysterious
— conditions that Fe M needs to respect the local V-filtrations. Recall that this
means that
t: F,V® — F,vett
should be an isomorphism for o > —1, and that
Or: Fr g1y — Frya gr371

should be an isomorphism for & < 0. I mentioned that these conditions are need to
make the filtration Fe M see the properties of the Z-module M. We also saw one
example of this: if M is a bundle with connection, then the first condition forces
each Fj M to be a subbundle. Here is another example.

Ezample 21.1. Suppose that M = H ®¢ C[d] is a Za-module supported at the
origin, and that Fy M is a “good” filtration by coherent &'a-modules. I claim that if
Fo M respects the local V-filtrations, then it must come from a filtration Fy H on the
vector space H, as in the construction from last week. Recall that V"M = H®1,
and more generally

¢
VUM =Y H®d.
§=0
We first construct a filtration on H. Let p € Z be such that F, ;M = 0 but
FyM # 0. The inclusion i: H < M, given by i(h) = h ® 1, allows us to define

F,H =i Y (FuyM).

By construction, F,_1H = 0, and F; M 2D F;,H ® 1; since F, M is compatible with
the action by differential operators, this gives

o0
MDY Fe jH®0.
§=0
We are going to prove that the two sides are equal, by induction on k& > p.

The first case is k = p. Let us show that F, M C V~1 M. Since the V-filtration
exhausts M, we certainly have F, M C VM for some o < 0. By assumption,

Op: Fyo1gryt M — F, gy M

is an isomorphism as long as a < —1; because the left-hand side is zero, this means
that F, M C V=*M. We can repeat this argument as long as av < —1; eventually,
we reach the conclusion that F, M C V=IM. But V-!M = H ® 1, and so

FM=F,H®I1.
Now let us deal with the general case. From the fact that
O¢: Fy, gr{‘}“ M = Fyyq griy M
is an isomorphism for @ > —1, we deduce that
FeiMNVEM = Fpu MO VZOM + 9 (FrM N VeI M),
and therefore (by gradually increasing « as before) that
FppiM = Fyyt MOV I M+ 0y (B M).

Since Fj41 MN V-IM = Fii1H® 1, we get

FyoiM=F 1 HR1+ 0, (Fk./\/l),

which gives the desired result by induction.
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Now let us suppose that M = H ®¢ C[9] is a polarized Hodge module of weight
w. It is not hard to see that the pairing h 4 is induced from a pairing on the vector
space H. Indeed, for any x,y € H, the two sections z ® 1 and y ® 1 are annihilated
by t, and therefore

t-hmzel,yel)=t-hylz®1l,y®1)=0

by sesquilinearity. Therefore hp(z2®1,y®1) must be a multiple of the -function,
and we obtain a well-defined pairing h: H ®c H — C with the property that

(hm(z @1,y @1),0dt A dt) = h(z,y) - (0).

By sesquilinearity, the entire pairing hq is then determined by h, as in the con-
struction from last week.

The definition of a polarized Hodge module now implies that H is actually a
polarized Hodge structure of weight w. Indeed, we have gr‘_/l M = H, and since
the operator N = td; — (—1) = Ot acts trivially, we get gr;,' M = grl/ gry,' M.
One can check that the induced pairing on H is just the pairing h from above. Since
M is a polarized Hodge module of weight w, it follows that H has a Hodge structure
of weight w, polarized by the pairing A (which must therefore be hermitian). The
Hodge filtration is induced by Fet1.M, hence equal to Fey1H in the notation from
above. Since

o0
M= Fp ;H® 0,
j=0
we find that the Hodge filtration on the Hodge structure H and the Hodge filtration
on M are off by —1; this is consistent with the construction from last week.

The limiting mixed Hodge structure. Let M be a polarized Hodge module of
weight w on A. Our goal is to analyze what the definition tells us about the two
vector spaces H = gr{, M and H' = gr;l M, and about the linear mappings

t: gr(/1 — gr(‘)/ and O: gr(‘)/ — gr‘;1 .

On H, we have the nilpotent operator N = tJ;, its monodromy weight filtration
WeH, and the filtration F¢H induced by FeM; by definition,

@ Hy = @ gr)V H

LEL LeZL
is a Hodge-Lefschetz structure of central weight w — 1. In particular, each Hy is a
Hodge structure of weight w — 1 + ¢, whose Hodge filtration F, Hy is induced by
F,H. On H’, we have the nilpotent operator N’ = t9; + 1 = 0;t, its monodromy
weight filtration W H’, and the filtration Fy H' induced by F, M; by definition

PDH =Pl 1
ez ez
is a Hodge-Lefschetz structure of central weight w. In particular, each Hj is a Hodge
structure of weight w + ¢, whose Hodge filtration Fe4qH) is induced by Fe1H'.
It is customary to denote the linear mapping d;: H — H' by the symbol ¢: H —
H’, as an abbreviation for “canonical”; likewise, the mapping ¢: H' — H is denote
by v: H' — H, as an abbrevation for “variation”. The commutative diagram

H —~— H
lN/lN’
H —~— H

expresses the fact that NV = vc and N’ = cv. In this setting, the weight filtrations
of the two nilpotent operators N and N’ are related as follows.
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Lemma 21.2. One has c(WyH) C Wy_1H' and v(W,H') C Wy,_1H.
We therefore get an induced mapping
c: Hy— H,_y;

both sides are polarized Hodge structures of weight w—1+4¢. Moreover, ¢ maps Fj, Hy
into Fy41H,_,, due to the fact that 9, - FyM C Fi11M; from the compatibility
of ¢ with the polarizations, one deduces that c¢ is actually a morphism of Hodge
structures. Similarly, we get an induced mapping

v Hé — Hg_l,
where the left-hand side is polarized Hodge structure of weight w + ¢ with Hodge
filtration Fey1Hj, and the right-hand side a polarized Hodge structure of weight
w+ ¢ — 2 with Hodge filtration FqH,—1. Since v maps Fy,H into FH,, we can add
a Tate twist to get a morphism of Hodge structures
c: Hy— Hy_1(—1).
One can then show that
c: @ngVH — @grz‘/‘il H'
LeL LEL
is a morphism of Hodge-Lefschetz structures of central weight w — 1, and that
v: @gr}}vH’ — @gr}f‘il H(-1)
LeZ LEL

is a morphism of Hodge-Lefschetz structures of central weight w.
Let us note the following important consequence of the fact that ¢ is a morphism
of Hodge structures.

Lemma 21.3. We have 9(grl,) N Fj, gry," = 0y (Fy—1 gry).

Proof. The statement is that ¢: H — H' is strictly compatible with the filtrations
FoH and Fe11H'. Since ¢(W¢H) C Wy_1H'), it suffices to show that this is true
for ¢: Hp — Hj_,. But this is a morphism of Hodge structures, and morphisms of
Hodge structures are always strictly compatible with the Hodge filtrations. O

Polarized Hodge modules with strict support. It is possible to characterize
those polarized Hodge modules on A that come from a variation of Hodge structure
on A* purely in terms of the V-filtration. Let me explain next how this works.
Suppose that M is a polarized Hodge module on A. The general properties of the
V-filtration imply that M = P - V1 M, which means concretely that

M= "0l VM.
j=0

Let us briefly recall the argument. As long as o < —1, the mapping
Oy : gr?ﬁl M — griy M

is an isomorphism; this gives VM = VM + 9, - VI M. We can iterate this
by gradually increasing the value of a, until we get to

VM =VM+0, - VoM.
From this, it is easy to deduce that
VEMCY 9l VM
j=0

for any a < —1. Since the V-filtration is exhaustive, this gives the desired result.
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In fact, the same thing is true for the filtration Fy M, because of the condition
that Fy M respects the local V-filtrations. As before, we set FpVM = FrbMN
VeM. In the above argument,

Op: Fi_1 gr?‘,‘F1 M — Fgrgy M
is an isomorphism for a < —1, and as before, this leads to
FkVaM - F}cV_lM + 8t . Fk,1Va+1M.

Since the V-filtration is exhaustive, one deduces that

FeM =Y "0 F VM,

Jj=0

which describes the entire filtration Fy M in terms of the filtration F, V=M on the
coherent Oa-module V! M. (By the noetherian property of coherent sheaves, we
have F,V M = V~IM for k > 0; this shows again that the first so many steps
in the filtration Fy M determine the whole thing.)

In the example from last week where M = P - ¥>~1 C ¥, the Z-module was
generated by V>"1M = ¥>~1 (by definition), and the filtration Fy M was given
by the better formula

oo
FeM =)0 FjV>7IM,
j=0
This gives a necessary condition for a polarized Hodge module on A to come from a
variation of Hodge structure on A*. This condition can be formulated more nicely
as follows.

Definition 21.4. Let X be a Riemann surface, and let M be a polarized Hodge
module on X. We say that M has strict support X if M does not have any
nontrivial subobject or quotient object whose support is a point.

Let us see how to express this condition in terms of the local V-filtration. After
restricting to a neighborhood of a given point, we can assume that M is a polarized
Hodge module on A, with V-filtration V*M. If M has a nontrivial submodule
supported on the origin, then we can find a local section m € M such that tm =0
but m # 0. Since ¢: gr{y M — glr?;rl M is an isomorphism except when a@ = —1,
we get m € V™I M; and since t: VOM — VM is an isomorphism for o > —1,
we must have m ¢ V>7"'M. This means that the image of m in gr(,l/\/l is a
nonzero element in the kernel of

t: gr‘_,l./\/l — gr), M.

Therefore injectivity of this mapping implies that M does not have nontrivial sub-
objects supported on the origin; in fact, the two conditions are equivalent. By
a similar argument, a nontrivial quotient object supported on the origin gives a
nontrivial element in the cokernel of

O : gr?,/\/l — g]r‘_/1 M,

and so surjectivity of this mapping implies (and is actually equivalent to) that there
are no such quotients. We can summarize this as follows.

Lemma 21.5. A polarized Hodge module M on a Riemann surface X has strict
support X iff at any point x € X, the mapping t: gr(/1 — gr¥ is injective and the
mapping Oy : gr% — gr(/l 1S surjective.
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Since 9;: gr% M — gr;l M is surjective, our earlier argument proves that

o0
M= "0l v>IM,
j=0
and so M is generated as a Zx-module by V>~ M. We already know that outside
the origin, M is a vector bundle with connection. Let us denote this vector bundle
by 7, and let ¥* be the canonical extension.

Lemma 21.6. For a > —1, we have VM = ¥,

Proof. The injectivity of ¢: glf(,1 M — gr9 M implies that t: M — M is injective;
therefore each V¥ M is a torsion-free &a-module, hence locally free. The action by
t0; defines a logarithmic connection

V: VM — QL (log0) ®g, VM
on this bundle, and for & > —1, we have
VEMAIVEM = VEM/VETIM.

Therefore the residue Resg V, which acts as multiplication by td;, has eigenvalues in
the interval [, & 4 1), and since the conditions uniquely characterize the canonical
extension, we get VoM = Y%, O

‘What about the filtration? If we knew that
O Frgry M — Fryq gr(/l M

was surjective for every k € Z, the same reasoning as before would show that

o0 o0
FM=Y 0] -F jVTIM=> 0] - F 77,
Jj=0 J=0
as in the construction from last week. The problem is that this surjectivity is not
part of the definition of a polarized Hodge module. Fortunately, the result is still
true, by virtue of Lemma 21.3 (in the special case where 0, is surjective).

So far, we know that M restricts to a polarized variation of Hodge structure
¥ on the punctured disk, and that both M and Fe M are obtained from ¥ by
the construction from last week. One can show moreover that the pairing haq is
determined by the polarization on ¥ in the same way, and so our polarized Hodge
module with strict support A is actually the polarized Hodge module associated to
¥ by the construction from last week. This is the essential step in the proof of the
following theorem.

Theorem 21.7 (Saito). Let X be a Riemann surface.

(a) If Z C X is a discrete subset, then a polarized variation of Hodge structure
of weight n on X\ Z extends uniquely to a polarized Hodge module of weight
n + 1 with strict support X.

(b) Every polarized Hodge module of weight n + 1 with strict support X arises
in this way.
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